
DNA markers are now routinely used to determine the correct
familial relationship between persons or animals. In many applica-
tions, e.g., paternity cases, only two (or a very short list) of possi-
ble familial relationships, or pedigrees, are considered. But the
technique can also be used in complex situations where there are a
large number of possibilities, e.g., identifying victims of an aircraft
disaster or a terrorist attack or identifying the bodies in a mass
grave that requires the consideration of a large number of explana-
tory hypotheses.

In several of these applications, e.g., aircraft disasters, informa-
tion from passenger lists, from relatives, and other nongenetic evi-
dence will be combined to create a list of missing persons, and
DNA evidence may be used to match the bodies to this list. In other
applications, less nongenetic information may be available, and the
more general problem of finding a correct familial relationship be-
tween a set of persons will come into focus. This would be the case
with, for example, a mass grave with no corresponding missing
person list. DNA testing has also been used to study relatedness in
animal populations (1). In such contexts, less nongenetic informa-
tion will usually be available.

This paper studies the problem of determining correct family re-
lations in a large group of individuals, focusing on the case where
no nongenetic information is available. We assume, however, that
the true pedigree linking the individuals consists of many smaller
sub-pedigrees with very distant relationships between the sub-
pedigrees.

As we understand and model quite well the processes generating
DNA marker data, we can formulate the problem as finding the
pedigree or pedigrees with the highest likelihood (or the highest
posterior probability) explaining the data. However, this “pedigree-

reconstruction” problem will usually be intractable because of the
complexity of the problem. The set of possible pedigrees connect-
ing a set of observed people (i.e., people from whom DNA mea-
surements have been taken) is infinite if one allows an unlimited
number of unobserved people to enter into the pedigree. In general,
at the present time, one must limit the number of unobserved peo-
ple allowed in the description of the pedigree to make the problem
tractable. This is the approach implemented in the computer pro-
gram FAMILIAS (2,3). But beyond about five observed people and
one or two unobserved people, the number of possible pedigrees
exceeds what can be handled by the program, unless there are spe-
cific restrictions on the possible relationships between the persons.
Thus, the general problem becomes intractable.

In several of the scenarios described above, we may exploit the
(prior) information that most pairs of people will be unrelated to
each other and that the pedigree sought will consist of many small
disconnected sub-pedigrees of relatives. Then, one possibly effi-
cient approach to the pedigree reconstruction is the following two-
step divide-and-conquer algorithm: first divide the people into a
sufficiently large number of small clusters such that people within
a cluster are (strongly suspected to be) related, and people from dis-
tinct clusters are (strongly suspected to be) unrelated to each other.
Then, provided the clusters are small enough, current software such
as FAMILIAS could be used to reconstruct sub-pedigrees from them.
The union of such cluster pedigrees will be the full pedigree. This
is illustrated in Fig. 1.

In this paper we propose a measure of estimating the relatedness
of two individuals and an algorithm that uses this measure to clus-
ter individuals, that is, to perform the divide stage of the divide-
and-conquer algorithm into possibly related familial groups of
manageable size. We do not address the detailed sub-pedigree re-
construction of the small clusters, assuming that this is to be done
using currently available software such as FAMILIAS (hence we do
not consider complications arising from incest, population sub-
structure, kinship. etc.). We shall also assume that other forensic
information (such as dental records) or other detailed prior infor-
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mation (such as the sizes and natures of the family groups) is un-
available to assist in the identification process.

The outline of the remainder of this paper is as follows. We be-
gin by discussing the desiderata of a clustering procedure. We then
define a distance measure appropriate in this context on which the
clustering can be based and study its properties. We then propose a
clustering algorithm, illustrating its use in some examples. Finally,
we investigate the performance of the clustering algorithm in a
simulation study.

Clustering Errors

In order to minimize the computational burden of the conquer
stage, it is desirable to create as many clusters as possible, mini-
mizing the size of each cluster as far as possible. Let G denote the
set of people for which a pedigree reconstruction is desired. Now,
for any two people, A and B, in the Set G, we have two possible hy-
potheses to entertain: (i) Hr, the two people are related, and (ii) Hu,
the two people are unrelated. A clustering algorithm can make two
possible decisions: allocate A and B to the same cluster, or allocate
A and B to distinct clusters. Thus, there are two types of errors that
a clustering algorithm may make that we call:

Type I Error: Allocate A and B to distinct clusters when they are in
fact related.

Type II Error: Allocate A and B to the same cluster when they are
in fact unrelated.

Ideally the clustering algorithm would be perfect and make nei-
ther type of error; however, this is unlikely to be the case. The best
we can hope for is that the algorithm will try and minimize these
errors. Of the two types of error, the Type II Error is not too bad in
that, if two people who are not related are placed in the same clus-
ter, their unrelatedness could yet be revealed in the full sub-
pedigree reconstruction of the cluster. Nevertheless, it is desirable
to minimize this type of error so that the sub-pedigree reconstruc-
tions can proceed as efficiently as possible.

In contrast, the Type I Error is bad, because if two related peo-
ple are put into separate clusters during the divide stage, there is no
way to recover from this error in the subsequent conquer stage. The
extent to which our method makes this error indicates the extent to
which it is an approximation compared to a full likelihood-based
analysis of the data. Thus, we should aim that the clustering algo-
rithm will make this type of error rarely, if at all.

The clusters generated by a clustering algorithm could either
form a partition of the set of people G or they could form a cover-

ing set, that is, two distinct clusters may have people in common,
with the union of the clusters giving the Set G. If the clusters form
a partition, then clearly this will help to minimize the computa-
tional burden of finding the sub-pedigree of each cluster. However,
this will tend to increase the possibility of both types of errors. For
example, suppose that three people are related by being two unre-
lated parents and their common child. Then, if the clustering algo-
rithm allocated the parents to distinct clusters and the clusters were
to form a partition, the child would only be able to be in one of
these two clusters. However, if the clusters formed a covering set,
the child could be allocated to both clusters. After construction of
the sub-pedigrees in each cluster, it would then be noticed that the
child occurs in two of the sub-pedigrees, and one could consider a
further stage in the pedigree reconstruction that looks at merging
such overlapping sub-pedigrees. In this paper, we focus on gener-
ating a partition of G and so do not consider such merging
strategies.

A Pair-Wise Genetic Distance

Definition of the Distance Measure

We now introduce our “distance measure” between two people
based on their DNA profile. For more on ideas based on genes be-
ing identical by descent (IBD), see, for example, Ref 4. Note the
following important fact: A pedigree influences the probability dis-
tribution of the autosomal DNA profiles of the two persons only
through the “IBD constellation” it induces. We define an IBD con-
stellation as a probability distribution on the set of IBD partitions
of the four alleles of the two persons in one allele system. We de-
fine an IBD partition as a determination of which alleles (from each
unordered pair) are IBD.

For example, the pedigree of a parent-child relation induces the
IBD constellation that with Probability 1 we have the IBD partition
where one allele from each person is IBD. A half-sibling pedigree
induces the following IBD constellation: With Probability �

1
2

�, none
of the alleles are IBD, and with Probability �

1
2

�, one allele from each
person is IBD. For full siblings, we get that with Probability �

1
4

� as
none of the alleles are IBD, with Probability �

1
2

�, one allele from each
person is IBD, and with Probability �

1
4

�, there are two pairs of IBD al-
leles, each pair with one allele from each person.

Although different pedigrees can induce an infinite number of
possible IBD constellations, the most usual pedigrees linking per-
sons A and B are: (i) A and B are parent and child (with either be-
ing the parent); (ii) A and B are full siblings or descendants from
full siblings; and (iii) A and B are half siblings or descendants from

FIG. 1—A pedigree of 13 observed people, consisting of six females (circles) and seven males (rectangles): female m1 is the mother of c1; the two fe-
males c2 and c3 are half-siblings sharing a common father f1; the males c4 and c5 are full siblings by m2 and f2; the two males b1 and b2 are also full sib-
lings, but their parents are not observed; the two females s1 and s2 are not related to each other nor to any of the other eleven people. The pedigree con-
sists of the six connected components: {m1,c1}, { f1,c2,c3}, { f2,m2,c4,c5}, {b1,b2}, {s1}, and {s2}. By correctly clustering the people into these six
components, detailed pedigree relationships within each cluster could be found by current software. We are not aware of any software that could examine
all possible pedigrees on 13 people (even without introducing unobserved people) because of the complexity arising from the large numbers of pedigrees
to be considered.



half siblings. Even if nonincestuous pedigrees can induce IBD con-
stellations different from those induced by the pedigrees above (as
incestuous ones also clearly can), such pedigrees are probably quite
rare and not very important to consider in our two-step procedure,
where the first step serves only to sort people into groups.

So what are the induced IBD constellations of these standard
pedigrees? We have mentioned the one for parent and child and the
one for full siblings. One may see that if one adds k1 and k2 suc-
cessive descendant generations to each of these siblings, the in-
duced IBD constellation has a probability of (�

1
2

�)k1�k2 that a pair of
alleles is IBD (one allele from each person), while with Probability
1 � (�

1
2

�)k1�k2, no alleles are IBD. Similarly, adding k1 and k2 suc-
cessive descendant generations to each of two half-siblings, the
induced IBD constellation has a probability of (�

1
2

�)k1�k2�1 that a pair
of alleles is IBD, while with Probability 1 � (�

1
2

�)k1�k2�1, no alleles
are IBD. Based on this, it seems reasonable to make the following
definition: A and B are said to have distance i, with i a positive in-
teger, if the induced IBD constellation of the pedigree relating them
has Probability (�

1
2

�)i�1 that a pair of alleles are IBD (one allele from
each person), while with Probability 1 � (�

1
2

�)i�1, no alleles are IBD.
Note that the distance between a parent and its child is unity. We
say that A and B have distance 1.5 if they are full siblings. We do
not define the distance between persons related by pedigrees in-
ducing other IBD constellations than these.

As mentioned, given the IBD constellation, we can compute the
probability of observing given DNA data for the two persons: we
simply condition on the different IBD partitions it can produce. As-
sume we have an allele system with alleles a,b,c,… and frequencies
pa,pb,pc,…. Then, there are essentially five different types of DNA
observations we can make for the two persons. (Note that the ob-
servations for the two alleles of each person are unordered and that
we also need not be concerned with which of the two persons has
which observation.) Their probabilities, given the IBD partition,
are listed in Table 1.

It is useful to transform this table into one listing the likelihood
ratio between the given IBD partition and the IBD partition where
no alleles are IBD for each possible type of observation. This is
done in Table 2. Given this information, we can now set up a
table for the likelihood ratio of different distances between the
two persons versus no relation between them (i.e., infinite dis-
tance), given DNA observations in one allele system. For exam-
ple, if the observations are aa and aa, the likelihood ratio between
distance 1.5 and infinite distance can be computed by considering
the three possible IBD partitions: With Probability �

1
4

�, there are
two pairs of IBD alleles, and the likelihood ratio is 1/p2

a; with
Probability �

1
2

�, one allele from each person is IBD, and the likeli-
hood ratio is 1/pa; and with Probability �

1
4

�, there are no IBD alle-
les, and the likelihood ratio is 1. Multiplying and summing gives
the entry of the top right hand corner of Table 3; the rest of the
table is derived similarly.

Let us assume we have two persons, A and B, and have observed
data for them in m different loci. Define aj, j � 1,…, m by

 �
p
1
a
� � 1   aa, aa 

 �
2
1
pa
� � 1   aa, ab 

aj �  �p4
a

p
�

ap
p

b

b
� � 1 when observations are  ab, ab  .

 �
4

1
pa
� � 1   ab, ac 

 �1   no common alleles
Then, assuming independence between allele systems, the total

likelihood ratio for A and B having positive integer distance i
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TABLE 1—The probability of observing different types of data for two
(unordered) persons, given the underlying IBD partition.

Cases None IBD One Pair IBD Two Pairs IBD

aa, aa p4
a p3

a p2
a

aa, ab 4p3
a pb 2p2

a pb 0
ab, ab 4p2

a p2
b papb( pa � pb) 2pa pb

ab, ac 8p2
a pbpc 2pa pbpc 0

No alleles in (depends upon 0 0
common genotypes)

TABLE 2—The likelihood ratio of different IBD partitions versus the
partition where no alleles are IBD for different types of data for two

(unordered) persons.

Cases One Pair IBD Two Pairs IBD

aa, aa 1/pa 1/p2
a

aa, ab 1/2pa 0
ab, ab (pa � pb) / 4papb 1/2papb

ab, ac 1/4pa 0
No alleles in common 0 0

TABLE 3—The likelihood ratios of different distances (versus infinite distance) for different types of data for two (unordered) persons.

Cases Distance i Distance 1.5

aa, aa ��
1
2

��
i�1

�
p
1
a
� � 1 � ��

1
2

��
i�1

�
1
4

� �
p
1
2
a
� � �

1
2

� �
p
1
a
� � �

1
4

�

aa, ab ��
1
2

��
i�1

�
2
1
pa
� � 1 � ��

1
2

��
i�1

�
1
2

� �
2
1
pa
� � �

1
4

�

ab, ab ��
1
2

��
i�1

�
p
4
a

p
�

a p
p

b

b
� � 1 � ��

1
2

��
i�1

�
1
4

� �
2p

1
apb
� � �

1
2

� �
p
4
a

p
�

ap
p

b

b
� � �

1
4

�

ab, ac ��
1
2

��
i�1

�
4
1
pa
� � 1 � ��

1
2

��
i�1

�
1
2

� �
4
1
pa
� � �

1
4

�

No alleles in common 1 � ��
1
2

��
i�1

�
1
4

�
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versus having infinite distance is

ƒ(i) � ∏
m

j�1

(21�i aj � 1).

Defining

g (x) � log�ƒ �1 � �
l
l
o
o
g
g
(
(
2
x)
)

��� � ∑
m

j�1

log(xaj � 1),

it follows that the second derivative of g is negative. Hence ƒ is ei-
ther monotonically increasing, monotonically decreasing, or
reaches a unique maximum (for continuous i). Together with the
fact that limi→�ƒ(i) � 1, this makes it easy to maximize ƒ.

The (smallest) positive integer i that maximizes ƒ we shall call
the estimated distance between A and B (unless the likelihood ratio
for distance 1.5 is greater than this maximum; then we say that the
estimated distance is 1.5). Note that it may well be infinite, corre-
sponding to the two persons being unrelated. In the next section we
illustrate the behavior of the distance measure.

Our definition of genetic distance is closely related to the kinship
coefficient (or co-ancestry coefficient) between two people, de-
fined as the probability that a randomly chosen allele from one of
them will be IDB with a randomly chosen allele from the other
(see, for example, Ref 5). Kinship may be used as an adjustment for
unspecified relatedness when computing the probability of ob-
served data given a pedigree. However, we can also think of it as a
measure of genetic distance between two people. Two people with
an integer distance i will have a kinship coefficient of 2�i�1. How-
ever, full siblings, with a distance of 1.5 will have a kinship coeffi-
cient of 2�2, the same as two people with Distance 1. It is clear that

the kinship coefficient does not specify the IBD constellation, so
we cannot compute the likelihood of a pedigree connecting two
people given their kinship coefficient. However, if we assume that
only the trivial IBD partition and the IBD partition with one pair
(one allele from each person) are possible, then the kinship coeffi-
cient does determine an IBD constellation, and we can estimate the
true kinship between two persons given DNA data in exactly the
same way as we estimate distances. The results will also be the
same, except that with our measure we also consider the possibil-
ity of a distance of 1.5.

Computations in Simple Cases

Having defined a distance between two persons and a way to es-
timate this distance, it is natural to ask how well the estimation
works. In the most general cases, simulation is probably the best
way to study this. However, if we make the simplification of only
considering allele systems where all alleles have the same fre-
quency, we can actually make explicit computations.

Assume we consider m such systems, with n1,…, nm alleles in
each. With a given distance between two persons, we can for each
system compute the probability of the persons having data of each
of the five different types. We thus get the probability for each of
the 5m different total data types we can observe. For each such data
type we can compute the maximum likelihood estimate for the dis-
tance as described above. In short, we get a probability distribution
of different estimated distances.

As an example, Fig. 2 plots the distribution of the estimated dis-
tance for two persons of actual distance 1, 1.5, 2, 3, and �, when
we have nine systems with four through twelve alleles in each sys-
tem. It also plots the distribution for actual distances 1, 2, and �

FIG. 2—The figure shows the probability distributions of estimated distances for different true distances between two persons. The true distances are
(from left to right and then top to bottom): 1, 1.5, 2, 3, 4, �, 2, 3, and �. In the plots, Distance 9 represents infinite distance. In the first six plots, nine sys-
tems with four through 12 alleles in each have been used, in the last three plots, nine systems with ten through 18 alleles were used.



when the systems have ten through 18 alleles. For the first set of
systems, we see that Distances 1 and 1.5 are estimated quite well,
and Distance 2 is estimated correctly in slightly more than half of
all cases. But for Distances 3 and 4, estimation works increasingly
badly, indicating that our method should not be used to estimate
distances much above 2. Infinite distance is again estimated cor-
rectly slightly more than half the time. This means that almost half
the time unrelated persons will be estimated to have some relation
that can clearly cause problems in our two-step procedure; thus, it
will be important to do the clustering in a careful manner. The last
row of histograms indicates that using systems with more alleles
tends to improve the estimation. This seems to be more important
than using many systems.

A Clustering Algorithm

Recall that the aim of the clustering method is to subdivide the
people in Set G into small clusters such that a group of people that
are related are in the same cluster, while unrelated groups of peo-
ple are assigned to different clusters. Any clustering algorithm is
likely to be subject to the Type I and Type II errors described in the
first section. Thus, ideally the clustering algorithm should aim to
minimize the probability that a group of related people are split up
and assigned to different clusters. However, a full solution to this
optimization problem is likely to be intractable. To estimate the
probability of a pair of people being related, we would need to set
up a prior on how they might be related—or indeed unrelated—and
then update the prior using the DNA data. A simplification to this
full analysis would be to look at the likelihood ratio of the most
likely relationship to that of being unrelated.

Here we do not pursue such a full or approximate probabilistic
analysis. Instead we use the distances estimated from the likelihood
ratios to find clusters in the following algorithm.

Partitioning Algorithm

From the members of Set G construct a graph as follows. Con-
struct a graph with each person a node in the graph and initially

without any edges in the graph connecting pairs of people. Select a
fixed upper bound d. Then, for each distinct pair of members of the
group connect them by an edge in the graph if their estimated dis-
tance is less than or equal to d. The clusters of interest are then the
connected components of the graph. We can also describe this as
doing hierarchical clustering with single linkage. The output could
then be described in a dendrogram (6).

The choice of d will be crucial to the partitioning algorithm. In
the limit of d → � we obtain a single cluster; hence, the probabil-
ity of Type I errors will go to zero. As discussed in the second sec-
tion, the results from Fig. 2 suggest that values of d greater than 2
will be subject to a great deal of Type II error. One approach in se-
lecting d would be to run the partitioning algorithm with values of
d � 1, d � 1.5, d � 2, etc., increasing d up to the largest value such
that the largest cluster generated is still amenable to the software
that would be used in the sub-pedigree analysis.

Examples

Example 1: Family with Two Children

Table 4 shows data on a family consisting of two full siblings
and their parents. In Table 5 we show distance measures between
each pair of individuals in the family evaluated using gene fre-
quencies for an Italian population; the values in each row have been
normalized to a maximum of unity. The table correctly identifies
the mother and father as being unrelated (we took an upper limit of
10 for distances in our evaluations). All parent-child relationships
are also correctly identified (Distance 1). The full-sibling relation-
ship (Distance 1.5) is not picked out for the two children, but in-
stead a Distance 2 is picked out, which if correct would indicate a
grandparent-child or half-sibling relationship. However, the likeli-
hood ratio is quite flat around the Distance 2, with Distance 1 be-
ing the next most likely. Thus the distance measure has picked out
that the two children are closely related. The graph obtained using
Distance d � 1 is shown in Fig. 3. The identification of this cluster
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TABLE 4—Data from a family consisting of two full siblings
and their parents.

Marker Mother m Father ƒ Child 1, c1 Child 2, c2

CFSPO1 10, 13 11, 12 11, 13 10, 11
D1S80 24 18, 26 24, 26 18, 24
D7S8 A A, B A, B A
DQA1 1.1, 1.3 1.1 1.1, 1.3 1.1
GC A, C A, B A, C B, C
GYPA A A, B A A
HBGG A, B A A, B A
LDLR A A, B A, B A, B
TPOX 11 8, 9 9, 11 8, 11

FIG. 3—Graph obtained by connecting pairs of people in Table 4 if their
estimated distance is equal to 1. Connecting people if their estimated dis-
tances were less than or equal to 2 would yield the same graph but with an
extra edge connecting c1 and c2.

TABLE 5—Pair-wise normalized likelihood ratios for Example 1. Underlined values indicate the true distance (interpreting distance 10 as unrelated).

i � 1 i � 1.5 i � 2 i � 3 i � 4 i � 5 i � 6 i � 7 i � 8 i � 9 i � 10

m:ƒ 0.000 0.003 0.139 0.451 0.697 0.847 0.923 0.964 0.985 0.995 1.000
m:c1 1.000 0.638 0.139 0.032 0.011 0.006 0.004 0.003 0.003 0.002 0.002
m:c2 1.000 0.140 0.423 0.210 0.135 0.105 0.092 0.085 0.082 0.081 0.080
ƒ:c1 1.000 0.140 0.504 0.276 0.172 0.122 0.098 0.086 0.080 0.077 0.076
ƒ:c2 1.000 0.161 0.587 0.374 0.279 0.236 0.215 0.205 0.200 0.198 0.197
c1:c2 0.932 0.239 1.000 0.842 0.721 0.652 0.616 0.598 0.588 0.584 0.581
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is sufficient for a fuller pedigree search using FAMILIAS, which in
fact confirms that c1 and c2 are children of m and ƒ.

Example 2: Four Children and One Parent

Our next example shows two full-siblings c1 and c2 and their
mother m, and a further two full siblings, c3 and c4, by a different
(unmeasured) mother, but who have the same (unmeasured) father
as c1 and c2. The data are shown in Table 6. The likelihood ratios
for various distances (normalized as in Table 5), are shown in Table
7. The results are reasonably encouraging. The mother-child rela-
tionships m:c1 and m:c2 appear strongly with peaks in the likeli-
hood ratios at Distance 1 falling off very quickly with increasing
distance. The full-sib relationship of c1:c2 also shows up strongly.

In contrast, the full-sib relationship of c3:c4 shows up quite weakly,
although a half-sib relationship is indicated. Note that m:c3 appear
unrelated, although m:c4 appear related at Distance 3. One of the
four half-sib relationships (c2:c4) appears correctly at Distance 2,
two appear at Distance 3 (c1:c3 and c1:c4), although the likelihoods
are fairly flat around there, and one at Distance 4 (c2:c3), but again
the likelihood is fairly flat. In summary, all children appear closely
related, with a full-sib relationship appearing very strongly and two
mother-child relationships also appearing strongly. The three
graphs obtained using the clustering algorithms for upper bound
values d � 1, d � 1.5, and d � 2 are shown in Fig. 4.

Example 3: The Romanov Data

Table 8 shows STR genotype data for the nine skeletons found
in a shallow grave 20 miles from Ekaterinburg, Russia, and be-
lieved to be the remains of the Romanov family, some servants, and
the family doctor, taken from Ref 7.

There are 36 different pairings of the nine skeletons, and we re-
frain from tabulating the likelihood ratios for every pair. Instead
Table 9 shows a matrix of estimated distances evaluated for each
pair of bodies. (We did not have the appropriate Russian population
gene frequencies, so instead we used Italian population gene fre-
quencies to construct this table.)

The graphs obtained by considering distances of d � 1.5 and
d � 2 are shown in Fig. 5. We see immediately that the royal fam-
ily members have been correctly grouped together and are sepa-
rated from the other four people in the set of nine bodies. Including
estimated distances of up to d � 2, we create a cluster consisting of
the doctor and two of the servants; however, the servants appear
unrelated to each other from Table 9.

The second step should be done with a likelihood-based proce-
dure, analyzing all possible (reasonable) pedigrees connecting the

TABLE 6—Data from a mother, m, her two full-sib children, c1 and c2,
and two further full-sib children, c3 and c4, who share the same father as

c1 and c2.

Marker m c1 c2 c3 c4

CFS1PO 11, 12 11, 12 12 10, 12 11, 12
D13 10, 13 10 10, 11 12,13 11
D16 10, 13 10, 11 10, 11 12, 13 11, 12
D18 13, 19 17, 19 12, 13 15, 17 12, 14
D21 31.2, 33.2 30, 31.2 30, 31.2 28, 32.2 30
D3 15, 16 15, 16 15 15, 18 17, 18
D5 11, 12 12 11, 12 12, 13 12, 13
D7 10 7, 10 9, 10 9, 11 11
D8 9, 13 13, 14 13 12, 13 9, 13
HUMFGA 21, 22 22, 23 22, 23 23 21, 23
HUMTH01 7, 9.3 7 7 8, 9 7, 9
TPOX 12 8, 12 9, 12 9, 11 9, 12
vWA 16, 17 16 16, 17 16 16, 17

TABLE 7—Pair-wise normalized likelihood ratios for Example 2. Underlined values indicate the true distance (interpreting distance 10 as unrelated).

i � 1 i � 1.5 i � 2 i � 3 i � 4 i � 5 i � 6 i � 7 i � 8 i � 9 i � 10

m:c1 1.0000 0.0113 0.0177 0.0009 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
m:c2 1.0000 0.0114 0.0185 0.0011 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
m:c3 0.0000 0.0002 0.0620 0.4052 0.7083 0.8653 0.9382 0.9720 0.9882 0.9961 1.0000
m:c4 0.0000 0.0508 0.4915 1.0000 0.6403 0.3408 0.1981 0.1354 0.1072 0.0940 0.0877
c1:c2 0.0000 1.0000 0.0431 0.0054 0.0011 0.0004 0.0002 0.0001 0.0001 0.0001 0.0001
c1:c3 0.0000 0.0254 0.8144 1.0000 0.7166 0.5306 0.4374 0.3921 0.3700 0.3590 0.3536
c1:c4 0.0000 0.0192 0.8559 1.0000 0.6900 0.4920 0.3929 0.3447 0.3210 0.3093 0.3035
c2:c3 0.0000 0.0029 0.4544 0.9793 1.0000 0.9324 0.8822 0.8537 0.8387 0.8310 0.8271
c2:c4 0.0000 0.6234 1.0000 0.3284 0.1215 0.0615 0.0405 0.0320 0.0282 0.0264 0.0255
c3:c4 0.0000 0.0339 1.0000 0.9680 0.7244 0.5860 0.5177 0.4844 0.4679 0.4598 0.4557

FIG. 4—Graphs obtained using the partitioning algorithm for Example 2 of the text for the upper bound values of d � 1, d � 1.5, and d � 2 used as the
criterion for connecting pairs of people using their estimated distances.



persons in each cluster. We illustrate how this can be done with the
FAMILIAS program. When using this program, we need to assume
knowledge of the sex of the involved persons (which is known in
the Romanov case). The program can then generate all possible
pedigrees containing the persons in the cluster (possibly adding ad-
ditional persons to include more complex pedigrees) and find their
likelihoods.

For the cluster of Size 5, the program finds 6720 pedigrees con-
necting them. Of these, the most likely pedigree is indeed the one
where persons numbered 4 and 5 (the Tsar and Tsarina) are the
parents of the three children, with a likelihood ratio of 2 to the next
most likely pedigree. Excluding pedigrees where either of the
persons 3, 5, or 6 are parents, we get 192 pedigrees, and the likeli-
hood ratio increases to 116 between the previously found pedigree
and the next most likely one, where Person 4 is not the father of
Person 5.

For the possible cluster of Size 3, we add one extra female and
one extra male, generating 1644 pedigrees. Of these, the most
likely ones are those where there are parent-child relationships be-
tween the doctor and the two servants; these pedigrees are in fact
more than five times as likely as the one where they are unrelated.

Even if we based an analysis on other data that excludes the possi-
bility that the three persons are in different generations, it is still
more than twice as likely that the doctor is the half-brother of both
servants as that they are all unrelated. This illustrates how difficult
it is to determine correct familial relations based on only four
marker systems.

Simulations

We now describe a simulation study that examined the sizes of
clusters and the rates of occurrence of Type I and Type II cluster-
ing errors.

Our simulation is based upon the pedigree of 13 individuals,
shown in Fig. 1. Given a set of k markers, and an upper distance ra-
dius d, an individual simulation consisted of drawing a random
sample of 10,000 sets of genotypes for the 13 individuals, consis-
tent with assuming both the Hardy-Weinberg equilibrium and also
independence within and between markers. For each of the 10,000
sets of genotypes, a graph on the 13 individuals was constructed,
with each node representing a distinct person, in which two distinct
individuals were connected by an edge if and only if their estimated
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TABLE 8—Romanov STR data.

Skeleton HUMvWA/31 HUMTH01 HUMF12A1 HUMFES/FPS

1 (servant) 14, 20 9, 10 6, 16 10, 11
2 (doctor) 17, 17 6, 10 5, 7 10, 11
3 (child) 15, 16 8, 10 5, 7 12, 13
4 (Tsar) 15, 16 7, 10 7, 7 12, 12
5 (child) 15, 16 7, 8 3, 7 12, 13
6 (child) 15, 16 8, 10 3, 7 12, 13
7 (Tsarina) 15, 16 8, 8 3, 5 12, 13
8 (servant) 15, 17 6, 9 5, 7 8, 10
9 (servant) 16, 17 6, 6 6, 7 11, 12

TABLE 9—Estimated distances for the Romanov STR data, based upon the four markers of Table 8.

Skeleton 1 (s) 2 (d) 3 (c) 4 (Tsar) 5 (c) 6 (c) 7 (Tsarina) 8 (s) 9 (s)

1 (servant) . . . 3 4 4 10 4 10 10 10
2 (doctor) 3 . . . 3 3 10 3 10 2 2
3 (child) 4 3 . . . 1 1.5 1.5 1.5 5 10
4 (Tsar) 4 3 1 . . . 1 1 3 6 3
5 (child) 10 10 1.5 1 . . . 1.5 1.5 5 10
6 (child) 4 3 1.5 1 1.5 . . . 1.5 10 10
7 (Tsarina) 10 10 1.5 3 1.5 1.5 . . . 10 10
8 (servant) 10 2 5 5 5 10 10 . . . 10
9 (servant) 10 2 10 3 10 10 10 10 . . .

FIG. 5—Graphs obtained by connecting pairs of people in the Romanov dataset using the estimated distances in Table 9. For d � 1.5 we obtain the
graph with the full edges; for d � 2, the two extra broken edges between the doctor and two of the servants appears. Table 9 suggests that these two ser-
vants are unrelated, so taking into account that these estimates are based only on four markers, we conjecture that the broken edges represent Type II
Errors.



8 JOURNAL OF FORENSIC SCIENCES

distance was �d. From the graph the number of connected compo-
nents and the size of the largest-connected component was found.
It was also recorded for each pair of individuals whether or not they
were in the same connected component. These values were accu-
mulated over the 10,000 sets of genotypes. Independent simula-
tions were performed for each of the 45 combinations of the three
values (1, 1.5, 2) for d and all integer values of k from k � 1 up to
k � 15. The gene frequencies used were estimates from a database
of human markers. The markers used were, in order: PENTA_D,
PENTA_E, CSF1PO, D13, D16, D18, D21, D3, D5, D7, D8,
HUMFGA, HUMTH01, TPOX, and vWA. The simulations for k
markers used the first k markers in this list.

Figures 6, 7, and 8 show the proportion of times that selected pairs
of individuals were in the same cluster for distances d � 1, d � 1.5
and d � 2, respectively. From Fig. 6 we see that most of the time m1

and c1 (having true Distance 1) are in the same cluster, as are the full
siblings (c4 and c5) and the half-siblings (c2 and c3). The reason the
latter are generally in the same cluster, even though their true dis-
tances at 1.5 and 2, respectively, are both greater than the Distance
Radius 1 used in constructing the cluster sets is that they tend to be
connected to their parents at Distance 1. In contrast, the full siblings
b1 and b2 (again true Distance 1.5) become less likely to be in the

same cluster as the number of markers is increased, because neither
of their parents were included in the clustering procedure. Similarly,
the unrelated pair (m1:s1) tends to be in different clusters as the num-
ber of markers is increased, and the same is true for the unrelated
pair (s1:s2). However, for a given number of markers, the proportion
of times that (m1:s1) are in the same cluster tends to be higher than
when (s1:s2) are in the same cluster; this is because most of the time
m1 is connected to c1, and when this happens s1 will be in the same
cluster as m1 if it is connected to either m1 or c1.

Figure 7 shows the effect of increasing the search radius to 
d � 1.5. The curves for the pairs (m1:c1), (c2:c3), and (c4:c5) all
overlap with proportions equal to almost 1 for all values of k, thus
correctly clustering them. The curve for the full siblings (b1:b2) in-
creases smoothly from a proportion of approximately 87.5% at k �
7 to 94% at k � 15, in contrast to the downward trend in Fig. 6. The
curves for the pairs (m1:s1) and (s1:s2) follow the same general
shape as in Fig. 6, but their rate of decrease is much less.

The results in Fig. 8 are similar to those in Fig. 7. The curve for
the pair (b1:b2) is now much closer to 1, having the lowest propor-
tion of 94.8% at k � 2, reaching 98.9% at k � 15. The curves for
(m1:s1) and (s1:s2) are now much higher than in Fig. 7 though still
generally decreasing with increasing k.

FIG. 6—Fraction of times pairs are in the same cluster, for search radius d � 1. Open square (m1:c1), open triangle (c2:c3), open circle (c4:c5), filled
circle (b1:b2), filled square (m1:s1), filled triangle (s1:s2). Horizontal axis gives the number k of markers.

FIG. 7—Fraction of times pairs are in the same cluster for search radius d � 1.5. Open circle (m1:c1, c2:c3, and c4:c5), filled circle (b1:b2), filled square
(m1:s1), and filled triangle (s1:s2). Horizontal axis gives the number k of markers.



Figure 9 shows the dependence of the fraction of clusters greater
than or equal to Sizes 5 or 8 for the three search radii d � {1,1.5,2}
upon the number of markers. The figure shows that more larger
clusters are formed with greater search radii, but that their number
decreases with increasing number of markers. The figure suggests
that using a search radius of 2 or more is quite likely to produce
sub-clusters that may be too large to analyze with current software.

Discussion

We have looked at the problem of identifying small family groups
in a population of mostly unrelated individuals by using their DNA
data for the purpose of performing the first step of a two-step pro-
cedure of identifying and reconstructing small family groups of in-
dividuals within a larger group. We have defined a distance measure
between two individuals in a pedigree, shown how to estimate the
distance between a pair of individuals, and have given an algorithm
that generates a partition of individuals into groups using the esti-
mated distances. We illustrated the effectiveness of our method on
some examples and in a simulation study. These examples and sim-
ulations suggest that for identifying very close relationships, up to
Distance 2 as we define it, the method is quite reliable with Type I
error being quite rare, a desirable feature of a clustering algorithm.

There are several directions in which the analysis could be ex-
tended. One is to perform a Bayesian estimation procedure in
which priors are put onto the various distances so that the whole
posterior distribution of distances as a measure of the relationship
between two persons may be found. This should lead to a better
theoretical understanding of the Type I and Type II errors, with
clustering based upon the posterior distributions. Another exten-
sion is to consider the sub-pedigree reconstructions of the family
groups. There appear to be several ways this could be done. It is
perhaps striking that in the Romanov example, almost all of the re-
lationships seem to come out correctly for the members of the royal
family by just considering the estimated pair-wise distances and us-
ing further prior information regarding the ages and sex of the five
individuals without a further more detailed analysis. The same is
true of the other examples. More generally, the estimated distances
could be used in a pedigree search to restrict the pedigrees to look
at. Thus, for example, if people A and B have an estimated distance
of 1, one might consider only those pedigrees in which their dis-
tance is, say, either 1, 1.5, 2, or infinite. (The larger distances would
be considered to allow for sampling error.) The search space would
then become much smaller, thus increasing the computational effi-
ciency and hence the complexity of the problems that could be
tackled.
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FIG. 8—Fraction of times pairs are in the same cluster for search radius d � 2. Open circle (m1:c1, c2:c3, and c4:c5), filled circle (b1:b2), filled square
(m1:s1), and filled triangle (s1:s2). Horizontal axis gives the number k of markers.

FIG. 9—Fraction of clusters greater than or equal to size s generated during cluster searches of various radii d: open circles, s � 8, d � 1; filled cir-
cles, s � 5, d � 1; open squares, s � 5, d � 1.5; filled squares, s � 8, d � 1.5; open triangles, s � 5, d � 2; filled triangles, s � 8, d � 2.



10 JOURNAL OF FORENSIC SCIENCES

Acknowledgments

The authors would like to thank Marina Dobosz for providing
the data and gene frequencies for the real examples.

References
1. Skaug HJ. Allele-sharing methods for estimation of population size. Bio-

metrics 2001;57:750–6.
2. Egeland T, Mostad PF. Statistical genetics and genetical statistics: a

forensic perspective. Scand J of Stat 2002;29:297–308.
3. Egeland T, Mostad PF, Mevåg B, Stenersen M. Beyond traditional pater-

nity and identification cases. Selecting the most probable pedigree. Foren-
sic Sci Int 2000;110:47–59.

4. Thompson EA, Heath SC. Estimation of conditional multilocus gene iden-
tity among relatives. In: Seillier-Moiseiwitsch, F, editor. Statistics in
molecular biology and genetics, IMS lecture notes. Monograph series,
Vol. 33;95–113. Hayward, CA: Institute of Mathematical Statistics, 1999.

5. Evett IW, Weir BS. Interpreting DNA evidence: statistical genetics for
forensic scientists. Sinauer, 1998.

6. Johnson RA, Wichern DW. Applied multivariate statistical analysis. New
York: Prentice Hall, 1998.

7. Gill P, Ivanov PL, Kimpton C, Piercy R, Benson, N, Tully G, et al. Iden-
tification of the remains of the Romanov family by DNA analysis. Nature
Genetics, 1994;6:130–5.

Additional information and reprint requests:
Dr. R. G. Cowell
Faculty of Actuarial Science and Statistics
Cass Business School
City of London
106 Bunhill Row
London EC1V 8TZ U.K.
E-mail: rgc@city.ac.uk


